(glibc 2.26) _int_malloc글과 동일하게 (glibc 2.23) _int_free글을 이해한 상태라고 가정하고 정리할 것이다
전체 코드는 아래와 같다
더보기
static void
_int_free (mstate av, mchunkptr p, int have_lock)
{
INTERNAL_SIZE_T size; /* its size */
mfastbinptr *fb; /* associated fastbin */
mchunkptr nextchunk; /* next contiguous chunk */
INTERNAL_SIZE_T nextsize; /* its size */
int nextinuse; /* true if nextchunk is used */
INTERNAL_SIZE_T prevsize; /* size of previous contiguous chunk */
mchunkptr bck; /* misc temp for linking */
mchunkptr fwd; /* misc temp for linking */
const char *errstr = NULL;
int locked = 0;
size = chunksize (p);
/* Little security check which won't hurt performance: the
allocator never wrapps around at the end of the address space.
Therefore we can exclude some size values which might appear
here by accident or by "design" from some intruder. */
if (__builtin_expect ((uintptr_t) p > (uintptr_t) -size, 0)
|| __builtin_expect (misaligned_chunk (p), 0))
{
errstr = "free(): invalid pointer";
errout:
if (!have_lock && locked)
__libc_lock_unlock (av->mutex);
malloc_printerr (check_action, errstr, chunk2mem (p), av);
return;
}
/* We know that each chunk is at least MINSIZE bytes in size or a
multiple of MALLOC_ALIGNMENT. */
if (__glibc_unlikely (size < MINSIZE || !aligned_OK (size)))
{
errstr = "free(): invalid size";
goto errout;
}
check_inuse_chunk(av, p);
#if USE_TCACHE
{
size_t tc_idx = csize2tidx (size);
if (tcache
&& tc_idx < mp_.tcache_bins
&& tcache->counts[tc_idx] < mp_.tcache_count)
{
tcache_put (p, tc_idx);
return;
}
}
#endif
/*
If eligible, place chunk on a fastbin so it can be found
and used quickly in malloc.
*/
if ((unsigned long)(size) <= (unsigned long)(get_max_fast ())
#if TRIM_FASTBINS
/*
If TRIM_FASTBINS set, don't place chunks
bordering top into fastbins
*/
&& (chunk_at_offset(p, size) != av->top)
#endif
) {
if (__builtin_expect (chunksize_nomask (chunk_at_offset (p, size))
<= 2 * SIZE_SZ, 0)
|| __builtin_expect (chunksize (chunk_at_offset (p, size))
>= av->system_mem, 0))
{
/* We might not have a lock at this point and concurrent modifications
of system_mem might have let to a false positive. Redo the test
after getting the lock. */
if (have_lock
|| ({ assert (locked == 0);
__libc_lock_lock (av->mutex);
locked = 1;
chunksize_nomask (chunk_at_offset (p, size)) <= 2 * SIZE_SZ
|| chunksize (chunk_at_offset (p, size)) >= av->system_mem;
}))
{
errstr = "free(): invalid next size (fast)";
goto errout;
}
if (! have_lock)
{
__libc_lock_unlock (av->mutex);
locked = 0;
}
}
free_perturb (chunk2mem(p), size - 2 * SIZE_SZ);
set_fastchunks(av);
unsigned int idx = fastbin_index(size);
fb = &fastbin (av, idx);
/* Atomically link P to its fastbin: P->FD = *FB; *FB = P; */
mchunkptr old = *fb, old2;
unsigned int old_idx = ~0u;
do
{
/* Check that the top of the bin is not the record we are going to add
(i.e., double free). */
if (__builtin_expect (old == p, 0))
{
errstr = "double free or corruption (fasttop)";
goto errout;
}
/* Check that size of fastbin chunk at the top is the same as
size of the chunk that we are adding. We can dereference OLD
only if we have the lock, otherwise it might have already been
deallocated. See use of OLD_IDX below for the actual check. */
if (have_lock && old != NULL)
old_idx = fastbin_index(chunksize(old));
p->fd = old2 = old;
}
while ((old = catomic_compare_and_exchange_val_rel (fb, p, old2)) != old2);
if (have_lock && old != NULL && __builtin_expect (old_idx != idx, 0))
{
errstr = "invalid fastbin entry (free)";
goto errout;
}
}
/*
Consolidate other non-mmapped chunks as they arrive.
*/
else if (!chunk_is_mmapped(p)) {
if (! have_lock) {
__libc_lock_lock (av->mutex);
locked = 1;
}
nextchunk = chunk_at_offset(p, size);
/* Lightweight tests: check whether the block is already the
top block. */
if (__glibc_unlikely (p == av->top))
{
errstr = "double free or corruption (top)";
goto errout;
}
/* Or whether the next chunk is beyond the boundaries of the arena. */
if (__builtin_expect (contiguous (av)
&& (char *) nextchunk
>= ((char *) av->top + chunksize(av->top)), 0))
{
errstr = "double free or corruption (out)";
goto errout;
}
/* Or whether the block is actually not marked used. */
if (__glibc_unlikely (!prev_inuse(nextchunk)))
{
errstr = "double free or corruption (!prev)";
goto errout;
}
nextsize = chunksize(nextchunk);
if (__builtin_expect (chunksize_nomask (nextchunk) <= 2 * SIZE_SZ, 0)
|| __builtin_expect (nextsize >= av->system_mem, 0))
{
errstr = "free(): invalid next size (normal)";
goto errout;
}
free_perturb (chunk2mem(p), size - 2 * SIZE_SZ);
/* consolidate backward */
if (!prev_inuse(p)) {
prevsize = prev_size (p);
size += prevsize;
p = chunk_at_offset(p, -((long) prevsize));
unlink(av, p, bck, fwd);
}
if (nextchunk != av->top) {
/* get and clear inuse bit */
nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
/* consolidate forward */
if (!nextinuse) {
unlink(av, nextchunk, bck, fwd);
size += nextsize;
} else
clear_inuse_bit_at_offset(nextchunk, 0);
/*
Place the chunk in unsorted chunk list. Chunks are
not placed into regular bins until after they have
been given one chance to be used in malloc.
*/
bck = unsorted_chunks(av);
fwd = bck->fd;
if (__glibc_unlikely (fwd->bk != bck))
{
errstr = "free(): corrupted unsorted chunks";
goto errout;
}
p->fd = fwd;
p->bk = bck;
if (!in_smallbin_range(size))
{
p->fd_nextsize = NULL;
p->bk_nextsize = NULL;
}
bck->fd = p;
fwd->bk = p;
set_head(p, size | PREV_INUSE);
set_foot(p, size);
check_free_chunk(av, p);
}
/*
If the chunk borders the current high end of memory,
consolidate into top
*/
else {
size += nextsize;
set_head(p, size | PREV_INUSE);
av->top = p;
check_chunk(av, p);
}
/*
If freeing a large space, consolidate possibly-surrounding
chunks. Then, if the total unused topmost memory exceeds trim
threshold, ask malloc_trim to reduce top.
Unless max_fast is 0, we don't know if there are fastbins
bordering top, so we cannot tell for sure whether threshold
has been reached unless fastbins are consolidated. But we
don't want to consolidate on each free. As a compromise,
consolidation is performed if FASTBIN_CONSOLIDATION_THRESHOLD
is reached.
*/
if ((unsigned long)(size) >= FASTBIN_CONSOLIDATION_THRESHOLD) {
if (have_fastchunks(av))
malloc_consolidate(av);
if (av == &main_arena) {
#ifndef MORECORE_CANNOT_TRIM
if ((unsigned long)(chunksize(av->top)) >=
(unsigned long)(mp_.trim_threshold))
systrim(mp_.top_pad, av);
#endif
} else {
/* Always try heap_trim(), even if the top chunk is not
large, because the corresponding heap might go away. */
heap_info *heap = heap_for_ptr(top(av));
assert(heap->ar_ptr == av);
heap_trim(heap, mp_.top_pad);
}
}
if (! have_lock) {
assert (locked);
__libc_lock_unlock (av->mutex);
}
}
/*
If the chunk was allocated via mmap, release via munmap().
*/
else {
munmap_chunk (p);
}
}
인자 및 변수 (동일)
glibc 2.23과 동일하다
initial_check (추가)
변경 및 추가된 코드
- tcache 관련 코드 추가
더보기
#if USE_TCACHE
{
size_t tc_idx = csize2tidx (size);
if (tcache
&& tc_idx < mp_.tcache_bins
&& tcache->counts[tc_idx] < mp_.tcache_count)
{
tcache_put (p, tc_idx);
return;
}
}
#endif
검사를 한 후 우선적으로 tcache에 넣으려는 코드가 추가되었다
free할 크기가 tcache의 범위에 존재하고 해당 tcache가 모두 채워지지 않으면 tcache_get함수를 호출해 해당 청크를 tcache에 저장하고 함수를 종료 시킨다
추가된 보안 검사
- 없음
fastbin (동일)
glibc 2.23과 동일하다
not fastbin (동일)
glibc 2.23과 동일하다
'Heap analysis > glibc 2.26' 카테고리의 다른 글
(glibc 2.26) free (0) | 2022.05.02 |
---|---|
(glibc 2.26) _int_malloc (0) | 2022.05.01 |
(glibc 2.26) tcache_put (0) | 2022.05.01 |
(glibc 2.26) tcache_get (0) | 2022.05.01 |
(glibc 2.26) tcache_init (0) | 2022.05.01 |